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Abstract: We investigate two-point correlation functions of left-handed currents com-

puted in quenched lattice QCD with the Neuberger-Dirac operator. We consider two

lattice spacings a ≃ 0.09, 0.12 fm and two different lattice extents L ≃ 1.5, 2.0 fm; quark

masses span both the p- and the ǫ-regimes. We compare the results with the predictions

of quenched chiral perturbation theory, with the purpose of testing to what extent the

effective theory reproduces quenched QCD at low energy. In the p-regime we test volume

and quark mass dependence of the pseudoscalar decay constant and mass; in the ǫ-regime,

we investigate volume and topology dependence of the correlators. While the leading order

behaviour predicted by the effective theory is very well reproduced by the lattice data in

the range of parameters that we explored, our numerical data are not precise enough to

test next-to-leading order effects.
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1. Introduction

Lattice QCD underwent continuous advances in recent years, thanks to increasing comput-

ing resources and to very important theoretical and algorithmic improvements. One of the

most important outcomes of these efforts is that unquenched computations are now reach-

ing ranges of volumes and quark masses where the QCD chiral dynamics can be tested and

the matching with the chiral effective theory be performed. Several studies for Nf = 2 have

been recently undertaken, with Wilson fermions (plain and with O(a) improvement [1, 2])

and Wilson twisted mass fermions [3 – 5]. For the case Nf = 3, beside the results published

in 2004 obtained with staggered fermions [6] (see [7] for recent updates), new data are

available for Domain Wall fermions [8] and for Wilson fermions [9]. Simulations with pseu-

doscalar masses MP as low as 200 − 300 MeV are becoming state-of-the-art. Therefore, it

is highly important to understand to what extent the chiral effective theory can be applied

in the region, in order to perform controlled chiral extrapolations.

On the other hand, in the past years many studies have matched quenched lattice results
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with the chiral effective theory [10 – 14], using the non-trivial assumption that quenched

QCD at low energy is described by quenched chiral effective theory. The main goal of this

work is to verify this assumption in two different kinematic corners of the chiral regime of

QCD.

On a finite volume with linear extent L, apart from the conventional p-regime, where

finite-volume effects are exponentially suppressed in (MPL), one can extract information

from other kinematic regions, for instance the ǫ-regime, where the chiral limit m → 0

is taken while keeping the pion wavelength much larger than L [15, 16]. Higher order

corrections in the chiral theory for physical observables look very different in the two cases;

the matching between QCD and the chiral effective theory gives rise to different systematic

effects and allows to extract quantities in the chiral limit from different observables. On the

lattice, several quenched simulations in the ǫ- regime with Ginsparg-Wilson fermions have

been performed [17 – 21, 13, 22 – 24]. In the quenched approximation it is now possible to

collect results with Ginsparg-Wilson fermions at different volumes and lattice spacings with

high statistics and reasonable computational effort. On the other hand, in full QCD the

simulation of the Ginsparg-Wilson Dirac operator is still very expensive from the numerical

point of view. First results for Nf = 2 are available both in the p- and ǫ-regime [25 – 32],

although at the moment only for limited ranges of lattice spacings and volumes. For other

regularisations, which break explicitly chiral symmetry at finite lattice spacing, exploring

the ǫ-regime is problematic.

We will adopt the Neuberger solution of the Ginsparg-Wilson relation for the Dirac

operator. In particular we will compute the left-handed current two-point correlation

function both in the p- and in the ǫ-regimes; in the p-regime we will investigate the quark

mass and volume dependence of the pseudoscalar decay constant and mass, and compare

it with the expectations from the chiral effective theory at NLO. In the ǫ-regime, we

will also study the topology dependence of the current correlators. We shall extract the

corresponding Low Energy Couplings (LECs) and compare the results obtained for the

leading order constants Σ and F in the two regimes. Moreover, by considering different

lattice spacings, we will check that lattice artifacts are small, as already observed in many

computations using the Neuberger Dirac operator (see e.g [33]). This work complements

and expands the study published in [13, 33].

The paper is organised as follows: in section 2 we recall the main results from the quenched

chiral effective theory at NLO, in the ǫ- and p-regime; section 3 is devoted to describing

the details of our numerical simulations; in sections 4 and 5 we match the lattice results

with the chiral effective theory in the ǫ- and p-regimes respectively; finally, in section 6 we

compare and discuss the results obtained for F and Σ in the two cases.

2. Current correlator in the chiral effective theory

At leading order, the Euclidean Lagrangian of the chiral effective theory is given by [34, 35]

L =
F 2

4
Tr
{
∂µU

†∂µU
}
−

Σ

2
Tr
{
eiθ/NfUM + M†U †e−iθ/Nf

}
, (2.1)
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where U ∈ SU(Nf) contains the pseudoscalar degrees of freedom and M is the mass matrix.

For simplicity we consider a mass matrix proportional to the identity, M = mI.

F and Σ are the pseudoscalar decay constant and the quark condensate in the chiral limit,

and θ represents the vacuum angle.

In a finite volume V = TL3 with L ≫ 1/ΛQCD, one can distinguish different chiral

regimes. If MP is the pseudoscalar meson mass, approaching the chiral limit by keeping

MPL ≫ 1 defines the so-called p-regime. In this case the chiral effective theory looks

essentially as in the infinite volume case: finite-volume effects are exponentially suppressed

by factors exp (−MPL), while the mass effects are the dominant ones. The power counting

in terms of the momentum p and quark mass m is given by

m ∼ p2, 1/L, 1/T ∼ p. (2.2)

Alternatively, one can approach the chiral limit while keeping µ = mΣV . 1; in this case

the Compton wavelength associated with the pseudo-Goldstone bosons is much larger than

the linear extent L of the box, and volume effects are enhanced. This defines the ǫ-regime,

where the power-counting is reorganised such that [16, 15]

m ∼ ǫ4, 1/L, 1/T ∼ ǫ. (2.3)

One of the most important effects of the reorganisation of the power counting is that, at

a given order in the effective theory, fewer Low Energy Couplings (LECs) appear with

respect to the p-expansion. The fact that the corresponding higher-order counterterms are

kinematically suppressed may be convenient for the extraction of LECs by matching the

effective theory to lattice QCD.

In this work we consider the left-handed current, which at leading order in the effective

theory formalism corresponds to

J a
µ =

F 2

2
Tr
(
T aU∂µU

†
)
, (2.4)

where T a are the traceless generators of SU(Nf). In particular we are interested in the

two-point correlation function

Cab(t) =

∫
d3x〈J a

0 (x)J b
0 (0)〉 = Tr[T aT b]C(t). (2.5)

The chiral effective theory formalism can be extended to the quenched case; in particular,

two equivalent methods have been developed to cancel the fermion determinant, namely

the supersymmetric formulation and the replica method [36 – 38]. An important feature of

the quenched setup is that the flavour singlet does not decouple in this case; moreover, its

mass parameter m2
0/(2Nc) is related to the topological susceptibility.

In the following we summarise the known results for this current correlator from

quenched chiral perturbation theory at NLO,1 in the ǫ- and p-regimes, with degenerate

1We neglect terms proportional to α

Nc
, which is the parameter associated to the kinetic term of the

singlet field, since it is suppressed for this observable in the simultaneous expansion in momenta and 1/Nc

[39].
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quark masses. Current correlators have been recently computed in the effective theory also

for non-degenerate quark masses, in the full and partially quenched scenarios, in the case

where all quarks are in the p- or in the ǫ-regime and in the mixed case, where mvΣV . 1

for the valence quarks and msΣV ≫ 1 for the sea quarks [40, 41].

2.1 ǫ-regime

Topology plays a relevant rôle in the ǫ-regime [42], such that observables must be considered

in sectors of fixed topological charge. In the quenched case, the current correlator in

eq. (2.5) at NLO and fixed topology ν is given by [43, 44]

Cν(t) =
F 2

2T

{
1 +

2µT 2

F 2V
σν(µ)h1

(
t

T

)}
, (2.6)

with

h1(τ) =
1

2

[(
|τ | −

1

2

)2

−
1

12

]
, (2.7)

and

σν(µ) = µ [Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)] +
ν

µ
, (2.8)

where Iν and Kν are modified Bessel functions. The most notable fact is that in the NLO

expression only the leading-order LECs Σ and F enter, as already anticipated.

In our analysis we will compare both the time and topology dependence of the QCD

correlators computed on the lattice with the expectations of the effective theory. A con-

venient way to study the topology dependence is to fix t = T/2; in the chiral limit one

has

µσν(µ)|µ=0 = |ν|, (2.9)

hence one expects Cν(T/2) to depend linearly on the topological charge ν. Moreover, one

obtains the parameter-free prediction

24L3 [Cν1
(T/2) − Cν2

(T/2)] |µ=0 = |ν2| − |ν1|. (2.10)

From this expression and from eq. (2.6) it becomes clear that the sensitivity to topology is

quite limited: in order for Cν(T/2) to be significantly different from Cν+∆ν(T/2) one needs

the following condition on the relative error:

∆Cν(T/2)

Cν(T/2)
≪

∆ν

12(FL)2
T

L
. (2.11)

Using the quenched value F ≃ 100 MeV from [13], this implies that statistical errors

much smaller than ∼ [(14∆ν)T/L]% for L = 1.5 fm and ∼ [(8∆ν)T/L]% for L = 2.0 fm

must be reached. Notice that NLO effects are larger for asymmetric boxes, since they are

proportional to (T/L)3; however, if T ≫ L one enters in a different kinematic range, called

δ-regime, which will not be discussed in this work.

For µ≪ 1, the leading µ-dependence in the NLO correction is given by

µσν(µ) =

{
|ν| + µ2

2|ν| + . . . (ν 6= 0)[
1
2 − γ − log

(µ
2

)]
µ2 + . . . (ν = 0),

(2.12)
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where γ is the Euler-Mascheroni constant. For ν 6= 0 we then expect a weak sensitivity to

quark mass for the current correlator.

Matching the left correlator computed in lattice QCD with the chiral effective the-

ory allows to extract the low-energy constant F with control over NLO effects. For this

particular correlator the chiral condensate Σ appears only at NLO; in particular the ex-

pression in eq. (2.8) represents the quenched chiral condensate at finite µ at leading order

in the ǫ-expansion [45, 46]. At NLO, the condensate retains the same functional form of

eq. (2.8) [45, 47], with µ replaced by µeff = (mΣeffV ) and

Σeff(V ) = Σ
[
1 + w0H̄(0)

]
, (2.13)

where

H̄(x) =
1

V

∑

p 6=0

1

(p2)2
eipx. (2.14)

Moreover, we have defined

w0 =
m2

0

2NcF 2
, (2.15)

where m2
0/(2Nc) is the flavor singlet mass parameter; as already anticipated, it is related

to the topological susceptibility by the equation2

〈ν2〉

V
=
m2

0F
2

4Nc
. (2.16)

In dimensional regularisation one obtains

H̄(0) = β2 +
1

(4π)2

[
1 + 2c1 + ln

(
L̂2

L2
0

)]
(2.17)

where L̂ = V 1/4, 1/L0 is the ultraviolet subtraction point, and

c1 =
1

4 − d
+

1

2
(−γ + ln(4π)) . (2.18)

β2 is a shape coefficient [48], which in the symmetric case T = L takes the value

β2 = −0.020305. (2.19)

The infrared “sickness” of quenched QCD is reflected here in the fact that Σeff(V ) diverges

in the limit L̂→ ∞. In the following we define operatively Σeff at a fixed V as

[
2|ν|Σ

mV

(
σν(µ) −

|ν|

µ

)]

m=0

≡ Σ2
eff(L), ν > 0. (2.20)

2We adopt the normalisation conventions of [43, 44].
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2.2 p-regime

In the p-regime, the NLO finite-volume prediction for the current correlator in the quenched

case is given by [49]

C(t) =
1

2
MV

P (F V
P )2

cosh
[
(T/2 − t)MV

P

]

2 sinh
[
TMV

P /2
] . (2.21)

The pseudoscalar decay constant in this case is volume-independent:

F V
P = FP = F

[
1 +

M2

2(4πF )2
α5

]
, (2.22)

where αi are the LECs associated with NLO operators in the (quenched) chiral Lagrangian

in the convention of [10], and

M2 =
2mΣ

F 2
. (2.23)

For the finite-volume pseudoscalar meson mass one obtains

(
MV

P

)2
= M2

P [1 + w0g2(MP , V )] , (2.24)

M2
P = M2

[
1 + w0H(M2) −

M2

(4πF )2
(α5 − 2α8)

]
, (2.25)

where H(M2) is given, in dimensional regularisation, by

H(M2) =

∫
ddp

(2π)d
1

(p2 +M2)2
=

1

(4π)2

[
2c1 − ln

(
M2

µ2

)]
. (2.26)

The volume-dependent function gr reads [48]

gr(MP , V ) =
1

(4π)2

∫ ∞

0

dλ

λ3−r
e−λM2

P

∑

n∈Z4

(
1 − δ

(4)
n,0

)
×

× exp

[
−

1

4λ

(
T 2n2

0 + L2
3∑

i=1

n2
i

)]
. (2.27)

In our analysis we will investigate finite-volume effects by comparing lattice results obtained

at different volumes V1 and V2. A convenient quantity to consider for this purpose is the

ratio MV1

P /MV2

P , for which one obtains the NLO expression

(
MV1

P

MV2

P

)2

= 1 + w0

[
g2(MP , V1) − g2(MP , V2)

]
. (2.28)

If w0 is given as input, this is a parameter-free prediction from the chiral effective theory.

By reabsorbing the divergences in eq. (2.26) in the low-energy constant Σ one obtains

M2
P

2m
=

Σ(µ)

F 2

[
1 −

w0

(4π)2
log

(
M2

µ2

)
−

M2

(4πF )2
(α5 − 2α8)

]
. (2.29)

Σ(µ) is related at NLO to the Σeff at a given scale (Leff) defined in the ǫ-regime in eq. (2.20)

by

Σeff(Leff) = Σ(µ)

[
1 + w0

(
β2 +

1

(4π)2
(
1 + log(L2

effµ
2)
))]

. (2.30)
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3. Numerical simulations

For our numerical study we have adopted the Neuberger-Dirac operator D [50, 51] and

the Wilson gauge action, on a box with volume V = L3T and lattice spacing a. We have

computed the two-point function

Cab(t) =
∑

~x

〈Ja
0 (x)Jb

0(0)〉 = Tr[T aT b]C(t), (3.1)

with the left-handed current

Ja
0 = ψT aγ0P−ψ̃, (3.2)

where P± = (1 ± γ5)/2 and

ψ̃ =

(
1 −

1

2
aD

)
ψ, a =

a

1 + s
. (3.3)

The parameter |s| < 1 has been chosen equal to 0.4. For complete definitions and conven-

tions related to the Neuberger-Dirac operator the reader can refer to [13]. An advantage

of using left-handed currents is that zero-modes of the Dirac operator do not contribute

to the corresponding correlator: at finite volume, no divergences are present in the m → 0

limit.

We have considered two sets of lattices, one dedicated to simulations in the p-regime

and one for the ǫ-regime. The parameters of the two sets are reported in tables 1 and 2.

For the p-regime we have chosen two different lattice spacings and two spatial extents

L ≃ 1.5 fm (p1 and p3) and L ≃ 2 fm (p2). The temporal extent is chosen to be T = 2L

(p1,p2) or T = 3L/2 (p3). For the lattice p3 we did not perform new simulations and we

used instead the data already presented in [13].

For the ǫ-regime, we have chosen three symmetric lattices (e1, e2, e3) with the same

parameters used in a previous work [24] for the computation of the quark condensate. The

quark masses here have been chosen such that (mV )/(ZSr
3
0) is constant for the lattices

(e1, e2, e3), where ZS is the renormalisation constant of the RGI scalar density [52, 33]

and r0 ≃ 0.5 fm [53]. Moreover, we have considered two additional asymmetric lattices, e4

and e5, with T = 2L. For the lattice e4 we used the measurements collected in a previous

project [54].

Following [55, 13], we applied the low-mode averaging technique in order to reduce large

fluctuations induced by low-modes wave functions. In tables 1 and 2, Nlow indicates the

number of low-modes which have been extracted. The computation of the topological

index, the low-lying eigenvalues and the inversion of the Neuberger Dirac operator have

been performed using the techniques in [56]. For all the lattices, the low eigenvalues have

been computed with a 5% precision. The values of the scale r0 in lattice units [57], ZS ,

and the renormalization factor for the local left-handed current [33] for our couplings β are

listed in table 3.
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lat β V Ncfg am Nlow

p1 5.8458 123 × 24 475 0.02, 0.03, 0.04, 0.06 7

p2 5.8485 163 × 32 197 0.02, 0.03, 0.04, 0.06 20

p3 6.0 163 × 24 113 0.025, 0.04,0.06,0.08,0.1 8

Table 1: Simulation parameters for the p-regime

lat β V Nν
cfg am Nlow

e1 5.8458 124 177, 313,221, 0.001, 0.003, 0.008, 20

126,62,35 0.012,0.016

e2 5.8458 164 49,69,82,72 0.000316, 0.000949,0.00253, 20

50,54,38,32 0.00380,0.00506

e3 6.0 164 131,231,178, 0.000612, 0.00184,0.00490, 20

96,44,16 0.00735, 0.00980

e4 5.8485 163 × 32 151, 130, 125, 101,87 0.002,0.003 20

86,66,52, 29

e5 5.8458 123 × 24 22, 55, 50, 56,25 0.003 7

21,22

Table 2: Simulation parameters for the ǫ regime. Nν
cfg indicates the number of configurations for

topologies |ν| = 0, 1, 2 . . ., except for lattice e4, where the lowest index is |ν| = 2.

β r0/a ZJ ZS

5.8458 4.026(23) 1.710(5) 1.28(6)

5.8485 4.048(23) 1.706(5) 1.28(6)

6.0 5.37(3) 1.553(2) 1.05(5)

Table 3: Values of the Sommer scale r0/a [57] and the renormalisation constants of the left-handed

current and the scalar density [33] for the values of β used in our study.

4. Matching lattice QCD with the chiral effective theory: ǫ-regime

4.1 LO matching

At LO in the ǫ-expansion, the left correlation function is expected to be independent on

time, mass and topology; from eq. (2.6) one reads

Cν(t) =
F 2

2T
. (4.1)

In figure 1 we plot the renormalised dimensionless quantity 2TZ2
JCν(T/2)r

2
0 as a function

of T/r0, for |ν| = 2 . We do not observe a significant mass dependence of this quantity,

hence we report the results only at a single value of µ (see figure caption).

The results obtained for lattices e1 (black filled circles) and e3 (blue filled triangles)

corresponding to T ≃ 3r0 are in good agreement between each other; this indicates that

within our precision we are not sensitive to lattice artifacts. Their consistency with the

– 8 –
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ν
|ν|=2

Figure 1: The quantity 2TZ2
JCν(T/2)r20 plotted as a function of T/r0 for lattices e1 (black filled

circles), e2 (red filled squares) and e3 (blue filled triangles). The plot reports the data at fixed

topological charge |ν| = 2 and fixed µ ≃ 0.6, corresponding to the intermediate quark mass. The

red empty squares correspond to the lattice e4 (µ ≃ 0.5, corresponding to the lightest mass), while

the black empty circles correspond to the lattice e5 (µ ≃ 1).

data of lattice e2 (red filled squares), for which T ≃ 4r0, is a verification of the 1/2T scaling

predicted at LO. In this plot we also show the data obtained with the asymmetric lattices

e4 (for am = 0.002, corresponding to µ ≃ 1) and e5 (µ ≃ 0.5). In this case the data tend

to depart from the results of the symmetric lattices, although not significantly within our

statistical errors. From the chiral effective theory we expect NLO effects to be larger for

asymmetric volumes, as already discussed in section 2.

4.2 NLO matching: topology dependence

At NLO, the ǫ-expansion gives predictions on time, mass, and topology dependence of

Cν(t); in particular, one expects Cν(T/2) at the chiral limit to depend linearly on the

topological charge.

In figure 2 we show the differences 24L2Z2
J [Cν1

(T/2) − Cν2
(T/2)] for several choices

of ν1, ν2 and compare the results with the parameter-free predictions of the chiral effective

theory, eq. (2.10). For the lattices e2 and e5 we excluded the sector |ν| = 1 because of

large statistical uncertainties. As already noticed in the previous section, we don’t observe

significant quark mass dependence. The statistical errors associated with the sector ν = 0

are very large. Hence, also in the case where we would expect a stronger quark mass
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6
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24L
3
Z

J

2
ν1 ν2

[ C (T/2) - C (T/2) ]

2-1
3-2

3-1 4-2

4-1 5-2

5-1 6-2

7-2

Figure 2: The differences 24L3Z2
J [Cν1

(T/2) − Cν2
(T/2)] computed in the ǫ-regime. The lines

represent the parameter-free prediction from the chiral effective theory (eq. (2.10)), and the numbers

denote the different combinations of (|ν2|−|ν1|). The data from lattices e1, e2 and e3 refer to µ ≃ 0.6,

corresponding to the intermediate quark mass. For the lattice e4, the lightest quark mass µ ≃ 0.5

is considered.

dependence as predicted by eq. (2.12), we are not sensitive to mass effects. Anyway we

exclude the ν = 0 sector from this analysis.

Numerical data tend to depart systematically from the theoretical expectations when

the topological charge is increased. Although statistical uncertainties associated with the

results are too large for precise quantitative statements, this may indicate that higher order

corrections are significant.

4.3 NLO matching: time dependence and determination of F .

At fixed values of the topological charge and quark mass, the ǫ-expansion predicts a

parabolic time dependence of current correlators. Since we have already observed that

our sensitivity is not high enough to test NLO dependence, we do not enforce the topology

and mass dependence of the NLO corrections and leave it as a free parameter. In particular

we perform the 2-parameter fit

Z2
JCν(t) =

B2
1

2T
+

1

L3
B2h1

(
t

T

)
. (4.2)
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The results for B1, B2 at the different masses and topological charges are collected in

the appendix A in tables 5, 6, 7. Three examples of the fit are given in figure 3, for the

intermediate mass and |ν| = 1. The fit ranges are t/a = 5−7, t/a = 5−11 and t/a = 6−10

for the lattices e1, e2 and e3 respectively. Asymmetric lattices are not considered in this

analysis. We observe that the results for B1 are stable within errors with respect to

the quark mass and topology. Moreover, each topological sector yields an independent

determination and it is possible to reduce the associated error by performing averages

between different sectors. By varying the fit range, no significant deviation is observed for

B1. We determine F in lattice units by averaging the results obtained for B1 at the five

quark masses, and then performing an additional average over different topological sectors.

In particular, for the lattices e1, e3 we consider |ν| = 1 − 3, while for the lattice e2 we

averaged in the interval |ν| = 2−4. This choice is due to large fluctuations which affect the

sector |ν| = 1; the same happens for the ν = 0 sector, for all lattices. For the dimensionless

quantity Fr0 we obtain

Fr0 = 0.284(4), (e1)

Fr0 = 0.278(6), (e2) (4.3)

Fr0 = 0.280(5). (e3)

The agreement between (e1) and (e2) indicates that finite-volume effects are below our

statistical precision; their agreement with (e3) is a signal that also lattice artifacts are

smaller than our errors.

In the chiral limit, the effective theory predicts the coefficient B2 to be equal to the topo-

logical index |ν|; in figure 4 we report the results for B2 at the smallest quark mass, as

a function of |ν|, together with the theoretical expectation. The results for B2 are more

sensitive to a change of the fit range with respect to B1; in particular for the lattice e1,

enlarging the fit range gives differences of the order of 2-3 standard deviations. This is

not surprising, since the latter has a relatively coarse lattice spacing and a relatively small

volume, and the number of points available for the fit is hence limited. Here we consider

only the results concerning the fit range t/a = 5 − 7, keeping in mind that additional

systematic error on B2 for lattice e1 can be substantial.

Like in the previous analysis at fixed t = T/2, the data show a tendency to depart from

the prediction with increasing |ν|, indicating that higher order effects may be important.

In particular, corrections are expected to be severe when |ν| ≫
√

〈ν2〉. However, also in

this case the statistical errors are very large and do not allow for a precise statement.

In this fit, the stability of the coefficient B1 with respect to m and ν can be interpreted

as a signal that systematic uncertainties coming from higher orders are under control. As

additional test we can constrain the NLO term3 B2 = |ν|

Z2
JCν(t) =

B
2
1

2T
+

|ν|

L3
h1

(
t

T

)
. (4.4)

3The very weak dependence on the quark mass for ν 6= 0 allows us to fix B2 to the expected value in

the chiral limit.

– 11 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
4

3 4 5 6 7 8 9 10 11 12 13
5e-05

0.0001

3 4 5 6 7 8 9 10 11 12 13

0.0001

0.00015

0.0002

3 4 5 6 7 8 9
t/a

0.00016

0.00018

0.0002

Z
J

2
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Figure 3: Time dependence of the correlator Z2
JCν(t) for |ν| = 1 at the intermediate quark mass,

for the lattices e1, e2, e3. The curves represent the fit of eq. (4.2), with ranges t/a = 5 − 7 (e1),

t/a = 5 − 11 (e2) and t/a = 6 − 10 (e3).

The results obtained for B1 for different |ν| are shown in figure 5 for the smallest quark

mass; compatible results are obtained for the heavier quark masses. In this case the

importance of higher order terms in the chiral theory manifests itself in the fact that B1

is topology dependent . However, for low |ν| we observe a constant behaviour within

statistical errors: moreover, data at low |ν| are fully compatible with the results reported

in eq. (4.3) obtained from the unconstrained fit, which are represented by the grey band

in the plot. This makes us confident that systematic errors on F coming from higher

order chiral corrections are smaller than the statistical uncertainties quoted in eq. (4.3).

Moreover, it also justifies the topology range that has been chosen at that stage to perform

the average.

5. Matching lattice QCD with the chiral effective theory: p-regime

The data obtained for the current correlator C(t) in the p-regime can be compared with

the expectation of the chiral effective theory at NLO, eq. (2.21); after symmetrising the

correlator around t = T/2, we compute the effective pseudoscalar mass aMV
P,eff(t) by solving

the equation

C(t)

C(t+ 1)
=

cosh
[
(T/2 − t)MV

P,eff(t)
]

cosh
[
(T/2 − t− 1)MV

P,eff(t)
] . (5.1)
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Figure 4: The coefficient B2 of eq. (4.2) as a function of the topological charge |ν|. The data

refer to the smallest quark mass. The results for the lattices e1 and e3 are slightly shifted on the

horizontal axis. The dotted line represents the theoretical expectation from the chiral effective

theory, B2 = |ν|.

From aMV
P,eff(t) we then compute an effective pseudoscalar decay constant aF V

P,eff(t)

F V
P,eff(t) = 2ZJ

√√√√√
C(t) sinh

(
MV

P,eff(t)T/2
)

MV
P,eff(t) cosh

[
(T/2 − t)MV

P,eff(t)
] . (5.2)

The results for aMV
P and aF V

P are obtained from a plateau (for t ≥ tmin) and are given in

table 4.

5.1 Pseudoscalar decay constant

The quenched chiral effective theory predicts F V
P to be volume-independent at NLO (see

eq. (2.22)). The volumes of the lattices p1 and p2 differ by a factor ≃ 3; for each quark

mass, the results obtained for aF V
P for the two lattices are compatible within the statistical

errors.4

The quark mass-dependence of aF V
P is well consistent with a linear behaviour. A chiral

extrapolation of the form

aFP = C1 + C2(am) (5.3)

4The correction due to slightly different values of β are smaller than the statistical uncertainty.
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Figure 5: The coefficient B1 of the constrained fit eq. (4.4) as a function of the topological charge

|ν|. The data refer to the smallest quark mass. The grey bands represent the results of eq. (4.3).

For the lattice e2, results for |ν| = 1 have been omitted due to large statistical errors.

lat. am aMV
P aF V

P tmin/a

p1 0.02 0.209(4) 0.0702(8) 6

0.03 0.239(3) 0.0715(8) 6

0.04 0.267(3) 0.0727(7) 6

0.06 0.315(3) 0.0751(7) 6

p2 0.02 0.197(3) 0.0695(6) 7

0.03 0.2308(24) 0.0707(7) 7

0.04 0.2604(23) 0.0719(7) 7

0.06 0.3114(23) 0.0742(8) 7

p3 0.025 0.199(6) 0.0530(10) 6

0.04 0.242(5) 0.0551(10) 6

0.06 0.292(5) 0.0580(10) 6

0.08 0.335(4) 0.0609(10) 6

0.1 0.375(4) 0.0637(10) 6

Table 4: Results for meson masses and decay constants in lattice units computed in the p-regime.

tmin/a indicates the first point in the plateau of aMV
P,eff(t) and aFV

P,eff(t).

yields for the three lattices the following results:

Fr0 = 0.273(4), (p1)
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Figure 6: FV
P r0 as a function of the quark mass (mr0/ZS) for the lattices p1, p2, p3.

Fr0 = 0.272(3), (p2) (5.4)

Fr0 = 0.265(6). (p3)

In figure 6 we show the quantity F V
P r0 as a function of the renormalised quark mass

mr0/ZS and the chiral extrapolation. The chirally extrapolated values are in good agree-

ment with each other, indicating that also lattice artifacts are below our statistical errors.

Alternatively, one can fit F V
P linearly in (MV

P )2, obtaining the LEC α5 directly from the

slope:

Fr0 = 0.268(4), α5 = 1.83(13), (p1)

Fr0 = 0.269(3), α5 = 1.69(14), (p2) (5.5)

Fr0 = 0.263(6), α5 = 1.64(8). (p3)

The extrapolated values for Fr0 do not differ significantly from the previous ones. The

values obtained for α5 are consistent with each other and with previous estimates [12, 13].

The origin of the discrepancy with the results of [10] have been discussed in [13].

5.2 Pseudoscalar mass

We consider the ratio of pseudoscalar meson masses obtained with the lattices p1 and

p2, which have different physical volume (V1 and V2 in the following). This ratio can be

compared with eq. (2.28), using the topological susceptibility from [58] and Fr0 = 0.265(6)
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Figure 7: Ratio of pseudoscalar masses, (MV1

P /MV2

P )2, where V1 corresponds to the lattice p1 and

V2 to the lattice p2. The filled circles are the data; the empty squares represent the expectation

from the chiral effective theory, eq. (2.28).

from eq. (5.4) for the lattice p3, that is

w0 =
m2

0

2NcF 2
= 23.9(2.5). (5.6)

MP is substituted by MV2

P , corresponding to the largest volume; once m0 and F are given,

eq. (2.28) represents then a parameter-free prediction. The results are reported in figure 7

(filled circles) for the different quark masses; the empty squares represent the parameter-

free expectation from the chiral effective theory. The data are compatible with the NLO

predictions; even though errors are too large to allow for a precise comparison, NNLO cor-

rections could be significant in this ratio. On the basis of this analysis, we can correct our

data for finite volume effects according to eq. (2.24) and then study the quark mass depen-

dence of M2
P /(2m). The results are presented in figure 8, where we show the data before

(top) and after (bottom) the finite volume corrections. Once the corrections are applied,

M2
P /(2m) as a function of the quark mass is well compatible with a constant behaviour,

without clear evidence for higher order effects. One can use anyway the knowledge on NLO

chiral effective theory and perform a two-parameter fit of the form

aM2
P

2m
= E1

[
1 −

w0

(4π)2
log

(
M2

P

µ2

)]
+ E2M

2
P , (5.7)
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with w0 and µ given as external inputs. From E1 and E2 we obtain

Σ(µ) = E1F
2; 2α8 − α5 = (4πF )2

E2

E1
. (5.8)

Using the results for F from the linear chiral fit in m as discussed in the previous section,

we obtain for the chiral condensate

1/µ = 1.5 fm : Σ(µ)r30 = 0.42(4), (p1)

Σ(µ)r30 = 0.43(3), (p2)

Σ(µ)r30 = 0.41(5), (p3)

1/µ = 2.0 fm : Σ(µ)r30 = 0.47(4), (p1) (5.9)

Σ(µ)r30 = 0.48(4), (p2)

Σ(µ)r30 = 0.47(6). (p3)

The combination (2α8 − α5) can be extracted with very limited accuracy; from this fit we

obtain errors of order 30-40 %. A more realistic estimation of the errors can be made by

considering a double-ratio fit

(
M2

P

2m

)

(
M2

P ref

2mref

) = 1 −
w0

(4π)2
log

(
M2

P

M2
P ref

)
+ Ē2(M

2
P −M2

P ref), (5.10)

where one fixes a reference mass mref and one identifies Ē2 = 2α8 − α5. From this one-

parameter fit we obtain uncertainties of the order 50-80 % on (2α8 − α5). It is then clear

that our precision is too poor to quote a result for this combination.

6. Comparing results from ǫ- and p- regimes

After analysing the data in the two regimes, we can now compare the results obtained for the

leading-order LECs Σ and F . We first compare the results for Fr0 for the different lattices

at our disposal; the data from the ǫ-regime, eq. (4.3), and from the p-regime, eq. (5.4), are

summarised in figure 9. The agreement is rather good, within one-two standard deviations.

The vertical line represents the weighted average

Fr0 = 0.275(6), (6.1)

where the error is taken as the largest uncertainty associated to the individual measure-

ments. We choose this rather conservative error estimate since we know from our analysis

that systematic effects are below the individual statistical uncertainties. Using the phe-

nomenological value r0 = 0.5 fm, one obtains F = 108.6(2.4) MeV.

The results obtained for the quark condensate fromM2
P /(2m) can be compared directly

with the ones of a previous work [24], where the condensate has been computed in the ǫ-

regime from a finite-size scaling study. The same parameters as for the lattices e1, e2, e3
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Figure 8: Quark mass dependence of the squared pseudoscalar mass for lattices p1, p2, p3. The plot

on the top shows the renormalised quantity
(MV

P
)2

2m
r0ZS ; on the bottom, finite volume corrections

according to eq. (2.24) are applied.

have been adopted. The final results quoted in [24] for the renormalisation group invariant

condensate at the scale Leff = 1.5 fm are

Σeff(Leff = 1.5 fm)r30 = 0.33(3), (e1)

Σeff(Leff = 1.5 fm)r30 = 0.31(5), (e2) (6.2)

Σeff(Leff = 1.5 fm)r30 = 0.29(3). (e3)
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Figure 9: Summary of the results for Fr0 obtained in the ǫ- and p- regimes. The vertical band

corresponds to the weighted average, with error corresponding to the largest uncertainty of the

individual measurements.

In that analysis it was pointed out that, within the statistical uncertainty, no NLO volume-

dependence is observed in Σeff , as well as no lattice artifacts. We adopted eq. (2.13) in

order to express all results at the scale 1.5 fm.

Using the formula in eq. (2.30), we can convert the p-regime results in eq. (5.9) in Σeff(Leff ):

for the case 1/µ = Leff = 1.5 fm we get

Σeff(Leff = 1.5 fm)r30 = 0.28(3), (p1)

Σeff(Leff = 1.5 fm)r30 = 0.285(25), (p2) (6.3)

Σeff(Leff = 1.5 fm)r30 = 0.27(4). (p3)

All these results are in good agreement, and are summarised in figure 10. They can be

converted into the MS- scheme at 2GeV by using the relation [59] mMS(2 GeV)/M =

0.72076. A weighted average gives

ΣMS
eff (2 GeV) = (292 ± 17 MeV)3 (Leff = 1.5 fm), (6.4)

which lies in the same range of previous quenched computations [17 – 19, 23, 33, 60 – 63].

Also in this case, the error associated to the average is the largest uncertainty coming from

the single values.

7. Conclusions

We have computed the left-left current correlator in quenched lattice QCD, adopting two

different lattice spacings and two different physical volumes, with quark masses in the p-
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Figure 10: Summary of the results for Σeff(Leff = 1.5 fm)r30 obtained in the ǫ- and p- regimes.

The vertical band corresponds to the weighted average, with error corresponding to the largest

uncertainty of the individual measurements.

and in the ǫ-regime. We have compared our results with the expectations of the quenched

chiral effective theory at NLO.

In the ǫ-regime we have tested the LO finite-size scaling, which is well reproduced by

the numerical data. At NLO the effective theory predicts a time and topology dependence

of the correlator: we have studied both effects and found good qualitative, but a rather

poor quantitative, agreement with NLO predictions. We should however point out that the

statistical uncertainty is not good enough to measure the NLO effects with good precision.

Our results are compatible with the fact that higher order chiral corrections could be

sizeable at these volumes. We expect these corrections to be more important for larger |ν|

and indeed the matching seems to work worse there.

In the p-regime, we have extracted the pseudoscalar mass and decay constant from the

two-point function. We have checked that the pseudoscalar decay constant at finite quark

mass FP is volume-independent, as predicted by the effective theory, and from a chiral

extrapolation we have extracted the low-energy constants F and α5. We have studied the

finite-volume effects on the pseudoscalar mass by computing ratios at different volumes.

We have observed that after correcting our data for finite-volume effects, the behaviour

of the quantity M2
P /(2m) as a function of the quark mass m is well compatible with a

constant one, with no signs of higher order terms, in the range of masses that we have

considered. From M2
P /(2m) we have extracted the quark-condensate with 10% precision.

Finally we have compared the results obtained for F from the p- and ǫ-regime, finding a

good agreement. Moreover, the results obtained for the condensate in the p-regime agree

with the ones obtained in the ǫ-regime from a previous study based on finite-size scaling.
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This general agreement on the leading-order LECs is a non-trivial test that quenched

QCD is well reproduced by quenched chiral effective theory at LO. On the other hand, a

higher statistical accuracy would be needed to test the matching at NLO.
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A. Numerical results

In this appendix we report the results of the NLO fit according to eq. (4.2) of the left-left

correlators computed in the ǫ-regime.

– 21 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
4

am |ν| B1 B2

0.001 0 0.103(22) 1.3(4)

1 0.070(3) 1.43(18)

2 0.0711(16) 1.73(18)

3 0.0703(16) 2.72(22)

4 0.0736(19) 3.1(3)

5 0.0741(20) 3.6(3)

0.003 0 0.083(12) 1.1(4)

1 0.0697(25) 1.44(18)

2 0.0711(16) 1.73(18)

3 0.0703(16) 2.72(22)

4 0.0737(19) 3.1(3)

5 0.0741(20) 3.6(3)

0.008 0 0.073(5) 1.2(3)

1 0.0701(19) 1.53(17)

2 0.0711(15) 1.80(18)

3 0.0704(16) 2.76(22)

4 0.0737(19) 3.2(3)

5 0.0741(20) 3.7(3)

0.012 0 0.073(3) 1.3(3)

1 0.0702(17) 1.64(17)

2 0.0712(14) 1.88(17)

3 0.0706(15) 2.81(22)

4 0.0738(19) 3.2(3)

5 0.0742(20) 3.7(3)

0.016 0 0.073(3) 1.52(24)

1 0.0703(15) 1.78(16)

2 0.0714(13) 1.98(17)

3 0.0708(15) 2.87(22)

4 0.0738(19) 3.3(3)

5 0.0742(20) 3.7(3)

am |ν| B1 B2

0.000316 0 0.08(3) 0.1(1.4)

1 0.076(9) 1.5(6)

2 0.068(3) 2.1(6)

3 0.0687(18) 2.7(4)

4 0.0696(19) 4.0(6)

5 0.0706(16) 3.9(5)

6 0.0683(15) 3.9(5)

7 0.0675(20) 4.5(6)

0.000949 0 0.073(20) 0.3(1.1)

1 0.075(9) 1.5(6)

2 0.068(3) 2.1(6)

3 0.0687(18) 2.7(4)

4 0.0696(19) 4.0(6)

5 0.0706(16) 3.9(5)

6 0.0683(15) 3.9(5)

7 0.0675(20) 4.5(6)

0.00253 0 0.067(7) 0.4(8)

1 0.071(6) 1.7(5)

2 0.068(3) 2.2(5)

3 0.0687(17) 2.7(4)

4 0.0696(19) 4.0(6)

5 0.0706(16) 3.9(5)

6 0.0683(15) 3.9(5)

7 0.0675(20) 4.5(6)

0.00380 0 0.067(5) 0.7(7)

1 0.070(4) 1.9(5)

2 0.069(3) 2.3(5)

3 0.0686(17) 2.8(4)

4 0.0696(18) 4.1(6)

5 0.0707(16) 3.9(5)

6 0.0680(15) 3.9(5)

7 0.0676(20) 4.5(6)

0.00506 0 0.068(4) 1.0(6)

1 0.069(3) 2.0(5)

2 0.0690(25) 2.5(5)

3 0.0686(16) 2.9(4)

4 0.0696(18) 4.1(6)

5 0.0707(15) 4.0(5)

6 0.0681(15) 3.9(5)

7 0.0676(20) 4.6(6)

Table 5: Results for the fit in eq. 4.2 for the

lattice e1, in the time range t/a = 5 − 7

Table 6: Results for the fit in eq. 4.2 for the

lattice e2, in the time range t/a = 5 − 11

– 22 –



J
H
E
P
0
5
(
2
0
0
8
)
0
2
4

am |ν| B1 B2

0.000612 0 0.064(14) 0.5(5)

1 0.0516(20) 1.00(18)

2 0.0516(14) 1.73(18)

3 0.0526(12) 2.47(23)

4 0.0524(16) 3.2(3)

5 0.0513(18) 3.1(4)

0.00184 0 0.058(9) 0.5(4)

1 0.0516(20) 1.02(18)

2 0.0517(14) 1.74(18)

3 0.0526(12) 2.47(23)

4 0.0524(16) 3.2(3)

5 0.0513(18) 3.1(4)

0.00490 0 0.053(4) 0.6(3)

1 0.0520(17) 1.13(17)

2 0.0518(13) 1.80(18)

3 0.0527(12) 2.51(23)

4 0.0524(15) 3.2(3)

5 0.0513(18) 3.1(4)

0.00735 0 0.053(3) 0.9(3)

1 0.0522(15) 1.26(16)

2 0.0519(13) 1.87(18)

3 0.0527(12) 2.56(23)

4 0.0525(15) 3.2(3)

5 0.0514(18) 3.1(4)

0.00980 0 0.0526(25) 1.1(3)

1 0.0523(13) 1.41(16)

2 0.0520(12) 1.97(18)

3 0.0528(12) 2.63(23)

4 0.0525(15) 3.3(3)

5 0.0515(18) 3.2(4)

Table 7: Results for the fit in eq. 4.2 for the lattice e3, in the time range t/a = 6 − 10
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